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Abstract

Aerosols deposition in turbulent bend flows is a major concern that is critical to many industrial, environmental and biomedical
applications. In this work, a well-resolved LES was performed to compute the deposition efficiency of aerosols in turbulent circular
cross-section bend flow of Dean number De ¼ 4; 225. The numerical predictions were compared to the experimental work of Pui
et al. [Pui, D.Y.H., Romay-Novas, F., Liu, B.Y.H., 1987. Experimental study of particle deposition in bend of circular cross-section.
Aerosol Sci. Technol. 7, 301–315] and the fully-resolved LES of Breuer et al. [Breuer, M., Baytekin, H.T., Matida, E.A., 2006. Prediction
of aerosol deposition in 90� bends using LES and an efficient Lagrangian tracking method. J. Aerosol Sci. 37, 1407–1428]. In the present
LES, a slightly coarser but unstructured-grid numerical description was adopted, entailing that a portion of the small scales’ contribution
to particle dispersion to be discarded. Thus, a Langevin-type stochastic model was used to model the effect of the discarded sub-grid
motion on aerosol deposition. This stochastic model was shown to perform well in previous studies [Berrouk, A.S., Laurence, D., Riley,
J.J., Stock, D.E., 2007. Stochastic modelling of inertial particle dispersion by subgrid motion for LES of high Reynolds number pipe
flow. J. Turbulence, 8, 50]. Good care was taken to ensure that the main dynamical features of the continuous phase were captured
by the present LES. An estimation of the filtered-out kinetic energy was provided. Results of the present LES with SGS model for
particles were found to compare well with the experimental work and the fully-resolved LES (near-wall DNS) of Breuer for all the range
of the Stokes number considered, 0:001 < St < 1:5. Influence of the SGS model for particles was visible for the deposition efficiency of
aerosols with Stokes number St < 0:3.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Deposition of aerosols in turbulent bend flows is
encountered in many industrial, environmental and bio-
medical applications of practical interest. Experimental
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and numerical studies of inertial deposition in curved
pipes have been motivated by interest in calculating the
deposition of inhaled particles in human airways. The
aim is to help providing more effective treatment of lung
diseases, better protection against toxic airborne pollu-
tants, and improvement in routes of systemic drug admin-
istration (Finlay, 2001). Other applications consist of
systems for sampling aerosol particles from atmosphere
or industrial process streams that commonly occur in
bends of piping systems. A significant loss of particles
can take place in a bend as a result of inertial deposition.
To obtain accurate data, it is important to correct for
the losses of particles in bends as well as other parts of
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Nomenclature

Roman letters
�p Filtered pressure field
Sij Resolved rate of strain tensor
ui Filtered fluid velocity
~kSGS Modified SGS kinetic energy
kSGS SGS kinetic energy
As;i Drift vector
Bs;ij Diffusion matrix
C�0 Diffusion coefficient
C0 Kolmogorov constant
CD Drag coefficient
Cn Cunningham slip correction factor
Cs Smagorinsky constant
dp Particle diameter
De Dean number De ¼ Re=

ffiffiffiffiffi
R0

p

kSGS SGS kinetic energy
Nafter bend

p Number of particles that exit the bend
Nbend

p Number of particles that deposit in the bend
R0 Curvature ratio R0 ¼ Rb=R
Rb Radius of curvature of the bend
Res Friction Reynolds number
Rep Particle Reynolds number
T �SGS Fluid sub-grid time scale with inertia and CT

effects included
T E;SGS Eulerian sub-grid time scale
T E Eulerian time scale
T L;SGS Lagrangian sub-grid time scale
T L Lagrangian time scale
U0 Mean velocity
us Friction or shear velocity
up Particle velocity
ur Mean slip velocity between fluid and inertial

particles
us Velocity of the fluid seen
ui Fluid fluctuating turbulent velocity
W i Wiener process
xi Cartesian coordinate system directions
xp Particle position

yþ Dimensionless distance from the wall
g Gravity force
h Grid spacing
I Inner radius of the curved bend
k Total Kinetic energy
O Outer radius of the curved bend
R Tube radius
Re Flow Reynolds number: Re ¼ ubD=m
St Stokes number St ¼ sp=T
T Integral time scale T ¼ R=U 0

t Time

Greek letters

b Ratio between the Lagrangian and the Eulerian
time scales

Dt Time step
D Filter width
dij Kornecker Delta
�r Dissipation rate of the SGS kinetic energy
gp Deposition efficiency
m Kinematic fluid viscosity
mSGS Sub-grid scale eddy viscosit.
qf Fluid density
qp Particle density
sij Sub-grid stress tensor
sp Particle response time
sw Wall shear stress sw ¼ qf u2

s

Acronyms

CT Cross Trajectory
DNS Direct Numerical Simulation
LES Large Eddy Simulation
RANS Reynolds-Averaged Navier-Stokes
SDE Stochastic Differential Equation
SGS Sub-Grid Scale
SM Stochastic Model
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the sampling system. This is a major concern for High-
Tech industries such as semiconductor manufacturing.
For the oil and gas industry, predicting inertial particle
deposition and the accompanying erosion phenomena is
crucial to avoiding extremely expensive component repair,
replacement or failure, and by consequence expensive sys-
tem shutdown.

For many of these applications, a Direct Numerical
Simulation (DNS) is not practical with today’s computers
while the Reynolds-Averaged Navier-Stokes approach
(RANS) is facing many limitations (Lakehal, 2002). Thus,
Large Eddy Simulation (LES) has emerged as a promising
tool to address these types of problems and its use has
increased over the years.
Large eddy simulation is essentially an under-resolved
simulation of the complex turbulence phenomenon that
uses a model to account for the lack of small scale resolu-
tion. In LES, the conflicting requirements of complexity
reduction while maintaining accurate predictions are
achieved by coarsening the numerical description through
spatial filtering on one hand and using a sub-grid stress
(SGS) modelling on the other hand. In the filtering process
the instantaneous information concerning the dynamics of
the small scales is washed out.

In LES of dispersed turbulent multiphase flows, it has
been common that tracking inertial particles in turbulent
flows is carried out using only the filtered velocity field,
considering as negligible any transport by the sub-grid



Fig. 1. External sketch of the circular-sectioned 90� bend.

Table 1
Experimental data

Bend diameter D ¼ 0:02 m
Radius of curvature of the bend Rb ¼ 0:056 m
Curvature ratio R0 ¼ 5:6
Maximal velocity U � 10 m=s
Reynolds number Re � 10; 000
Dean number De � 4; 225
Stokes number 0:001 6 St 6 1:5
Particle density qp ¼ 895 kg=m3
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fluctuations. In principle, this should be sufficient to predict
turbulent fluctuations and their effects on the transport of
inertial particles with large relaxation times compared to
the smallest LES-resolved turbulence time scales. However,
in wall-bounded turbulent flows, the filtered-out small
scales near the wall often carry a substantial amount of
kinetic energy and the spatial resolution is not fine enough
to capture them. This may result in an excessive filtering-
out of kinetic energy. This is also the case for flows with
recirculation zones and secondary motion. Thus, modelling
turbulent fluctuations linked to these small scales has pro-
ven crucial for small-Stokes-number inertial particle dis-
persion as it was shown by Armenio et al. (1999) and
Berrouk et al. (2007). This modelling is expected to be
equally important for particle deposition.

The time dependent velocity field seen by the inertial
particles in a Lagrangian framework can be stochastically
constructed through the use of a stochastic diffusion pro-
cess such as Langevin equation (Langevin, 1908). This
Lagrangian approach based on Langevin equation has
been extensively used in the framework of RANS to con-
struct total turbulence fluctuations based on the mean flow
statistics (Minier et al., 2004).

In the framework of RANS, the Lagrangian stochastic
model is designed with the aim to reproduce the whole
spectrum of turbulence that an inertial particle should
see. This turbulence is, in particular in the case of non-equi-
librium flows, highly anisotropic and characterized by a
wide range of length and time scales. Modelling accurately
such intricate details a turbulent flow-field is often prob-
lematic. This could explain the limitations faced by the
Lagrangian stochastic modelling in the context of RANS.
The picture becomes more optimistic when it comes to
using the Lagrangian stochastic modelling to account for
inertial particle transport by the sub-grid motion for
LES. Indeed the temporally and spatially narrow range
of the small scales that are discarded by the filtering in
LES are deemed to be quasi isotropic and homogeneous.
Thus, the model is expected to reproduce them with a
higher degree of accuracy.

The Langevin-type stochastic process in the framework
of LES was first used by Shotorban and Mashayek
(2006) to model SGS transport of inertial particles in a
decaying isotropic turbulent flow. However, particle inertia
and cross trajectory effects were neglected which is valid
only for inertial particles with vanishing response times.
A detailed derivation of the Langevin-type stochastic pro-
cess in the framework of LES of inhomogeneous and aniso-
tropic turbulent flows was given by Berrouk et al. (2007), in
which both inertia and cross trajectory effects were taken
into account. Very promising results were obtained for
the study of dispersion of particles with very small response
times in a high-Reynolds turbulent pipe flow.

In this work, liquid particle deposition in a circular-sec-
tioned 90� bend is numerically investigated using a well-
resolved LES along with the Langevin-type stochastic
model described in Berrouk et al. (2007). A well-resolved
LES is an LES where a portion of the relevant or energy-
containing scales are not resolved. These discarded scales
should not contain more than 25% of the kinetic energy
according to Celik et al. (2003) and Pope (2004). The
numerical predictions are compared to the experimental
observations of Pui et al. (1987) and the fully-resolved
LES results of Breuer et al. (2006). A fully-resolved LES
is an LES where all the relevant or energy-containing scales
are resolved. In the experimental work of Pui et al. (1987),
the deposition efficiency of liquid particle in tube bend of
circular cross-section was measured. Fig. 1 represents an
external sketch of the circular-sectioned 90� bend while
the experimental data are summarized in Table 1. The full
description of the test facility, working parameters and
data processing are given by Pui et al. (1987).

In fact the present numerical investigation is similar to
the work of Breuer et al. (2006) with a major difference that
it used a coarser numerical description. According to Bre-
uer et al. (2006) the space resolution used in their work is
found sufficient to resolve all relevant scales. In the present
study a coarser description is adopted to allow certain
amount of kinetic energy to be filtered out and a portion
of the energetic small scales to be discarded. Such situation
presents us with the opportunity to test the ability of the
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stochastic model to include sub-grid motion in the study of
aerosol deposition.

2. Governing equations of particle-gas turbulent flow

2.1. Continuous phase

2.1.1. Flow dynamics

In finite bends of circular cross-section, the turbulent
flow dynamics is complex. Indeed it is characterized by
the existence of recirculating regions and curved stream-
lines. For curvature ratio R0 greater than five, the flow field
in bends of circular cross-section depends only on the Dean
number (Berger et al., 1983). The Dean number is defined
as the flow Reynolds number divided by the square root
of the curvature ratio:

De ¼ Re
ffiffiffiffiffi
R0

p.
: ð1Þ

It represents the ratio of the square root of the product
of centrifugal and inertial forces to the viscous forces. It
plays the role of the Reynolds number of the flow in a
curved pipe. The curvature ratio is defined as R0 ¼ Rb=R
where Rb is the radius of curvature of the bend and R is
the tube radius.

For high Dean number ðDe > 370Þ turbulent flow, sec-
ondary boundary layers develop on the wall, with fluid
entering these boundary layers near the outer bend and
leaving near the inner bend. A further increase of the Dean
number, and hence the centrifugal force, leads to an
increase in the axial velocity and to more fluid being sucked
into the secondary boundary layers near the outer bend.
The secondary boundary layers adjust by thinning near
the outer bend and thickening near the inner bend. Simul-
taneously, the locations of the maximum axial velocity
moves toward the outer bend. As a result of that, a sym-
metrical pair of counter-rotating helical vortices is formed.

These dynamical features that characterize a turbulent
flow in a circular bend are expected to be captured by solv-
ing the Navier-Stokes equations for all the scales down to
Kolmogorov scales. This is the direct numerical simulation
and it is an expensive approach. LES is a practical alterna-
tive that relies on solving the anisotropic flow-dependent
large scales while modelling the quasi homogeneous and
isotropic small scales.

2.1.2. Governing equations

LES formulation for the continuous phase is based on
spatially filtering continuity and Navier-Stokes equations
that describe the spatial and temporal evolution of fluid
flows. In the case of an isothermal, incompressible and
Newtonian fluid, they can be written as the following:

o�ui

oxi
¼ 0; ð2Þ

o�ui

ot
þ o�ui�uj

oxj
¼ � op

oxi
þ 1

Res

o2�ui

oxjoxj
þ osij

oxj
; ð3Þ
where

sij ¼ �ui�uj � uiuj: ð4Þ

Here Res is the Reynolds number based on the friction
velocity us and sij is the sub-grid scale (SGS) stress tensor.
It is modelled using the algebraic eddy-viscosity model pro-
posed by Smagorinsky (1963):

sij �
1

3
dijskk ¼ �2mSGSSij; ð5Þ

with mSGS is the sub-grid scale viscosity:

mSGS ¼ ðCsDÞ2 1� exp � yþ

Aþ

� �3
" #

S
�� ��: ð6Þ

Here Cs is the Smagorinsky constant, its value is taken
equal to 0.065. j S j¼j 2SijSijj1=2, where Sij ¼ 1

2
ðoj�ui þ oi�ujÞ

is the resolved rate-of-strain tensor. The filter width D is
taken equal to 2h, where h is the grid spacing
ðh ¼ ðhx:hy :hzÞ1=3Þ. 1� exp � yþ

Aþ

� �3
� 	

is a Van Driest damp-
ing function that accounts for the reduction of the sub-grid
length near solid walls. It is based on the dimensionless dis-
tance from the wall yþ ¼ yus=m. Aþ is taken equal to 25. The
filter width D used in the present LES is twice as wide as the
filter used by Breuer et al. (2006) for their fully-resolved
LES. For the choice of the Smagorinsky constant Cs,
results of LES of channel and pipe turbulent flows per-
formed using Code_Saturne have shown that the value of
Smagorinsky constant that gives the closest estimations
to the DNS results is Cs ¼ 0:065 (Archambeau et al.,
2004; Laurence, 2006).

Previous simulations of fully developed straight and
curved pipe flow with the Smagorinsky model and the
Van Driest damping function have shown good agreement
with experiments (Boersma and Nieuwstadt, 1996; Berrouk
et al., 2007). From turbulence modelling we know that
RANS models based on eddy viscosity assumptions do
not perform well in flows with curved streamlines. However
in an LES, the Smagorinsky sub-grid model is only intro-
duced to represent small scale dissipation and indeed,
Eggels and Nieuwstadt (1993) showed that it correctly pre-
dicts the large scales in a rotating pipe flow.

The time step Dt in the numerical simulations is taken
equal to 0.1T where T is the integral time scale defined as
the ratio of the tube radius R and the velocity at the centre
of the pipe U 0. This time step allows to hold the CFL num-
ber below 1.5 everywhere in the computational domain.
2.1.3. Boundary conditions

To eliminate the unknown influence of the inlet and exit
conditions on the flow development in the bend, a horizon-
tal inlet section of length D is mounted to the 90� bend.
The outlet is elongated by adding a vertical straight pipe
with a length of 2D.

To avoid the use of artificial inflow data which often
only partially satisfy all physical requirements, an appro-
priate inflow boundary conditions for the turbulent flow
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within the bend is needed. For that purpose, a separate
LES prediction of a 5D length straight pipe with the same
cross-section, flow Reynolds number and time step size was
carried out. Periodic conditions are used and the length of
the straight pipe (5D) allows all the two-point correlations
to vanish midway between the boundaries. When the tur-
bulent pipe flow reaches a fully developed state, the veloc-
ity profile of one cross-section of this periodic LES is used
as inflow conditions at the inlet of the pipe mounted in
front of the bend.

Non-reflecting boundary conditions are applied at the
outlet of the elongated bend. This ensures that all vortical
structures can leave the integration domain without signif-
icant disturbances or wave reflections into the inner region.
Since the first grid point is placed sufficiently close to the
wall, it is possible to apply the no-slip boundary condition
at the wall. The pressure is computed assuming a vanishing
pressure gradient in the wall-normal direction.
Fig. 2. Use of non-conforming embedded refinement for LES grid.
2.1.4. Grid resolution

An unstructured grid consisting of 1,300,000 cells is used
with about 4,700 grid points on each cross-section. A polar
grid is used for the first three layers with non-conforming
embedded refinement as shown in Table 2. Then the polar
grid is made to match an octahedral block for the core
region as it is depicted in Fig. 2. The first grid point near
the pipe wall at which the axial velocity is computed is
located at yþ � 1:3, with 3 grid points placed within the vis-
cous sublayer, the depth of which equals 5 wall units. A
non-uniform grid is employed in the normal-to-the-wall
direction within the circular part. This is done in order to
locate more grid points in the near-wall region. It is worth
noting that two grid points in the viscous sublayer is in gen-
eral enough for LES of straight pipe flow. For curved pipe
the thickness of the viscous sublayer is non-uniform.
Indeed for the fully developed curved pipe, the sublayer
thickness at the outside radius is approximately 3.5 wall
units while at the inside radius the depth of the viscous
layer measures 8 wall units. By having 3 points under 5 wall
units everywhere in the domain, the resolution of the vis-
cous sublayer regardless its location should be adequate
especially at the outside of the bend. It is also clear that
the resolution at the inside of the bend and in the straight
pipes will be increased since more than 2 points are used to
resolve the viscous sublayer.

Care should be taken when using the non-conforming
embedded refinement to locate more cells where resolution
Table 2
Non-conforming embedded refinement in the polar part of the unstruc-
tured grid

Y þ ¼ us:y=m Rad.
direction

Circumf.
direction

Streamwise
direction

0 < yþ < 5 3 cells 240 cells 400 cells
5 < yþ < 30 6 cells 168 cells 360 cells
30 < yþ <� 180 12 cells 144 cells 240 cells
is needed. The near-wall region is characterized by steep
gradients and very small energy-containing eddies that
should be well captured. These near-wall coherent struc-
tures contain most of the turbulence and are responsible
for the correct distribution of the turbulent energy from
the streamwise into the other directions. Moreover, the
near-wall turbulence has a significant impact on the depo-
sition of inertial particles and therefore it should be prop-
erly resolved. As depicted in Fig. 2, the different non-
conforming layers are designed such that the aspect ratios
between the cell sizes in the different directions do not
exceed 5 to avoid numerical instabilities that arise when
using very flat cells. Thus the use of non-conforming layers
should be efficient since it allows a cell distribution that
responds to the requirement of the flow dynamics without
introducing further numerical errors.

The LES calculations performed by Breuer et al. (2006)
for the same case used a grid that consisted of 2,280,000
cells with 8,900 grid points in each cross-section. According
to Breuer et al. (2006) the resolution is found sufficient to
resolve all relevant scales at the moderate Reynolds num-
ber considered in the present study. However, no evidence
was given to underpin their claim such as an estimation of
the amount of the filtered-out kinetic energy.

The unstructured grid used in the present LES appears
to have a similar number of grid points to the block-struc-
tured grid used by Breuer et al. (2006) but the distribution
of cells in all the directions is very different. Indeed, Bre-
uer’s grid is finer than the present LES grid in the near wall
layer (with the first point near the wall at yþ ¼ 0:35 while in
the present LES the first point is at yþ ¼ 1:3). For the
streamwise direction, Breuer used 257 grid points while
for the present LES, 240 grid points were used in the core
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region then the number of grid points in the streamwise
direction was increased with increasing radius to reach
400 grid points in the vicinity of the wall (see Table 2.).
This, in order to keep the aspect ratio between the radial
and streamwise direction under 5.

Concerning the cross-section, Breuer’s discretisation is
finer in the circumferential direction, but accounting for
the unstructured nature of the present grid, the difference
between Breuer’s grid (8900 cells in cross section) and the
present one (4700 cells) is not very large when individual
cell sizes are compared.

Finally, in the present LES all the governing equations
of the two phases were solved in the physical space while
in Breuer et al. (2006) a coordinate transformation was
used to solve the governing equations in a so-called compu-
tational space.
2.2. Dispersed phase

2.2.1. Governing equations
Aerosols are released and tracked in the turbulent flow

that is described in the previous section. The physical prop-
erties of these inertial particles are summarized in Table 3.

As a result of the high density ratio between particle and
fluid densities, the equation describing particle motion is
reasonably simple and only the drag and gravity forces will
be retained since other forces are in this case negligible
(Maxey and Riley, 1983). The tracking of the inertial par-
ticles within the turbulent flow obeys the following system
of equations:

dxp;i ¼ up;idt;

dup;i ¼
up;i � us;i

sp
dt � gidt;

sp ¼ Cn
qp

qf

4dp

3CD us � up

�� �� ;
CD ¼

24
Rep
ð1þ 0:15Re0:687

p Þ if Rep < 1000

0:44 if Rep > 1000:

(
ð7Þ
Table 3
Physical characteristics of the tracked inertial particles

Mean diameter
dpðlmÞ

Cunningham
factor Cn

Response time
sp(ms)

Stokes
number St

0.62 1.280 0.0011 0.001
4.77 1.042 0.055 0.05
6.80 1.024 0.11 0.1
9.65 1.019 0.22 0.2

11.23 1.015 0.29 0.27
11.64 1.015 0.32 0.29
14.70 1.007 0.5 0.46
18.83 1.003 0.82 0.75
19.95 1 0.92 0.84
21.77 1 1.09 1
24.05 1 1.33 1.22
25.30 1 1.47 1.35
26.66 1 1.64 1.5
Here xp and uP are the particle position and velocity, us

is the fluid velocity seen by an inertial particle along its tra-
jectory, g is the gravity force per unit of mass, dp and qp are
the diameter and the mass density of inertial particles, sp is
the particle response time, CD is the drag coefficient and Rep

is the particle Reynolds number, Rep ¼ dp j us � up j =m
with m is the kinematic fluid viscosity. Cn is Cunnigham slip
correction factor. It is considered herein to correct the drag
coefficient in order to take into account the free-slip bound-
ary conditions that occur at the surface of the particles.

To ensure particle statistics of high quality, the number
of released particles was set to a reasonably large value;
250,000 particles in order to reduce the statistical noise
on the deposition results. These particles are randomly dis-
tributed over the cross-section at the inlet. They are all
released at the first time step and then tracked throughout
the flow field until they exit the bend or deposit on the wall.

It is considered that particles adhere to the surface upon
contact. Numerically, contact is supposed to occur when
the particle radius is smaller or equal to the normal dis-
tance between the surface and the particle centre. No
bounce from the surface is considered. Though a large
number of particles are released and tracked within the
flow, neither two-way coupling nor particle collision are
considered. This is consistent with the experimental work
of Pui et al. (1983) since they used a very dilute suspension.
A trilinear interpolation scheme is used to obtain the veloc-
ities between the grid points.

The only unknown in the system of Eq. (7) is the fluid
velocity us seen by inertial particles along their trajectories
as they move through the turbulent field. The Eulerian
velocity field described in Section 2.1 contains only part
of the information of the velocity field that inertial particles
should see. This information is linked to the filtered veloc-
ity of the large scales. Any information about the sub-grid
scale motion is lost because of the filtering operation. As it
was explained in the introduction, this information about
the turbulence at the sub-grid scale level is crucial for the
transport of inertial particles with response times smaller
than the smallest LES-resolved time scales.

In the next section, the Langevin-type stochastic model
proposed by Berrouk et al. (2007) is used to reconstruct
the Lagrangian instantaneous fluid velocity seen by inertial
particles based on the LES filtered velocity field. This
model accounts for the inertial character of the particles
and the presence of a body force.
2.2.2. Modelling of the fluid velocity seen by the particles

The general form of the Langevin model chosen for the
velocity of the fluid seen by particles is:

dus;i ¼ As;iðt; xp; up; usÞdt þ Bs;ijðt; xp; up; usÞdW j; ð8Þ

where the drift vector A and the diffusion matrix B have to
be modeled. Each component of the vector dW is a Wiener
process (white noise); it is a stochastic process of zero
mean, hdW i ¼ 0, a variance equal to the time interval,



1016 A.S. Berrouk, D. Laurence / Int. J. Heat and Fluid Flow 29 (2008) 1010–1028
<(dW)2>= dt,and delta-correlated in the time domain
(Kloeden and Platen, 1999).

The theoretical and numerical formulations of the
Langevin model have been extensively discussed in the
framework of particle-laden RANS by Pozorski and
Minier (1998) and Minier et al. (2003). The use of the
Langevin model is extended by Shotorban and Mashayek
(2006) and Berrouk et al. (2007) with the necessary modifi-
cations for the modelling of time increment of the fluid
velocity seen by inertial particles in LES framework. A
detailed derivation of the different terms of the Lagrangian
model is provided by Berrouk et al. (2007). Herein, only the
evaluation of these terms in the case of inhomogeneous and
anisotropic turbulence and how inertia and CT effects are
accounted for is provided. The Langevin-type model reads:

dus;i ¼ � 1

qf

o�p
oxi
þ 1

Re
o

2�ui

oxjoxj

 !
dt � ðus;i � �ui

T �SGS

� �
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C�0h�ri

q
dW i: ð9Þ

Here us is the fluid velocity seen by particles along their
trajectories, T �SGS is the fluid SGS time scale seen by parti-
cles, C�0 is the diffusion constant and < �r > is the dissipa-
tion rate of the SGS kinetic energy kSGS . The fluid SGS time
scale seen by inertial particles T �SGS is T E;SGS (the Eulerian
SGS time scale) in the limit of large Stokes number. On
the other hand, T �SGS ¼ T L;SGS (the Lagrangian SGS time
scale) if St ! 0 since in this case the inertial particles reduce
to fluid elements. Thus, T �SGS in general is a function of St
and varies between T L;SGS and T E;SGS as it is portrayed in
the following equation (Wang and Stock, 1993):

T �SGS ¼
T L;SGS

b

�
1� ð1� bÞð1þ StÞ�0:4ð1þ0:01StÞ

�
: ð10Þ

St is Stokes number based on the Eulerian SGS time
scale and b is the ratio between the Lagrangian and the
Eulerian time scales. It is assumed that b keeps the same
value across the different scales of turbulence:

b ¼ T L=T E ¼ T L;SGS=T E;SGS : ð11Þ

It was shown that its value is Reynolds number depen-
dent (Sato and Yamamoto, 1987) and varies considerably
in the literature. For this study, it is expected that its influ-
ence on the model predictions is very small, since small uni-
versal scales are modeled. In this study, b is chosen to be
0.356 (Wang and Stock, 1993).

Eq. (10) was developed for particles interacting with
homogeneous and isotropic turbulence. Its use in the pres-
ent context to account for inertia effect on Lagrangian sub-
grid time scale is more appropriate compared to its use to
include inertia effect on Lagrangian time scale in the frame-
work of RANS/SM where the construction of a wide spec-
trum of anisotropic turbulence fluctuations is sought
through the stochastic modelling.

For LES, the Lagrangian time scale for the sub-grid
fluctuations T L;SGS is computed using the sub-grid kinetic
energy kSGS and its dissipation rate �r that have to be eval-
uated according to the SGS model used to take into
account sub-grid effects on the large scales. It reads follow-
ing Heinz (2003):

T L;SGS ¼
1

2
þ 3

4
C0

� ��1 kSGS

h�ri
: ð12Þ

In the case of the Smagorinsky model, if equilibrium is
assumed at the cut-off, the production balances the dissipa-
tion. Thus, the SGS kinetic energy and its dissipation rate
can be evaluated as:

�r ¼ �sij:
d�ui

dxj
¼ ðCs:DÞ2 S

�� ��3; ð13Þ

kSGS ¼ C�ðD:�rÞ2=3
: ð14Þ

Typically C� � 1 and C0 � 2:1 (Gicquel et al., 2002).
The directional dependence of the fluid Lagrangian SGS

time scales T L;SGS is neglected since sub-grid scales are
assumed to be homogeneous and isotropic.

To account for the cross trajectory effect due to the
presence of a body force, the Lagrangian time scale is
expressed in the case of inertial particle as function of
the instantaneous relative velocity between the fluid and
the inertial particles. Since there is a difference between
the longitudinal and transverse length scales for the spatial
correlations, it is important to have a non isotropic form
for T �SGS . To achieve this purpose, it is important to distin-
guish between the time scale measured in the direction of
the mean relative velocity and the time scale measured in
the transversal direction. If the direction (1) is aligned with
the direction of the mean relative velocity and (2) and (3)
are the transversal ones, we can use Csanady formulas
(Csanady, 1963) to compute the different anisotropic time
scales:

T �SGS;k ¼
T �SGSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2 j hurij2=ð2k=3Þ
q ;

T �SGS;? ¼
T �SGSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4b2 j hurij2=ð2k=3Þ
q :

ð15Þ

Here huri is the mean slip velocity between fluid and
inertial particles. k is the resolved turbulent kinetic energy.
In fact Csanady formulas also take into account the conti-
nuity effect. The continuity effect postulates that the inertial
particle dispersion in a direction perpendicular to the mean
drift is twice as faster as inertial particle dispersion in a
direction parallel to the mean drift.

The diffusion coefficient C�0 is evaluated according to the
following formulation (Minier and Peirano, 2001):

C�0 ¼ C0bi
~kSGS=kSGS þ

2

3
ðbi

~kSGS=kSGS � 1Þ ; ð16Þ

where C0 is the Kolmogorov constant, and ~kSGS is a modi-
fied SGS kinetic energy:



Fig. 3. LES predictions of the turbulent flow in the mid-plane of the bend.
(a) Pressure field of the time-averaged flow, (b) velocity magnitude of the
time-averaged flow.

Fig. 4. LES predictions of the turbulent flow in the mid-plane of the bend.
(a) Velocity magnitude of the instantaneous flow, (b) streamlines of the
time-averaged flow.
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~kSGS ¼
3

2

P3
i¼1bi < u02i >P3

i¼1bi

ð17Þ

Here u0i is the fluid fluctuating velocity and bi ¼ T �SGS=
T �SGS;i ði ¼? or kÞ.

At each time step Dt, Eqs. (10)–(17) are evaluated for
each particle separately. The stochastic differential equa-
tions (SDE) system that comprises Eqs. (7) and (9) is
integrated using an appropriate weak second-order inte-
gration scheme (Minier et al., 2003) that accounts for
the nature of the problem characterized by the presence
of different time scales; this can lead to stiff equations
when the smallest time-scale is significantly less than the
time-step of the simulation. This point is crucial for phys-
ical and engineering applications, where various limiting
cases can be present at the same time in different parts
of the domain or at different times. Because turbulence
problem has a multi-scale character, three time scales are
considered: The observation time scale, Dt, and two
physical time scales, the particle relaxation time, sp, and
the time scale of the fluid velocity seen, T �SGS . When these
scales go to zero, a hierarchy of stochastic differential
systems is obtained. The Langevin-type model used in this
study degenerates to a stochastic model for turbulent dif-
fusion when sp ! 0, that is, the inertial particles behave
like fluid particles.

The weak second-order integration scheme consists of a
prediction step and a correction step. The prediction step is
a weak first-order integration scheme (Euler scheme). By
freezing the coefficients on the integration intervals and
by resorting to Ito’s calculus, it can be shown that the
above SDE system has an analytical solution. The analyti-
cal solutions for particle position xp, velocity up and seen
fluid velocity us are given in Appendix.

As it was highlighted by Maclnnes and Bracco (1992)
and Minier and Peirano (2001), the Langevin model under
the formulation (9) does not suffer any spurious drift in the
non-homogeneous case.

2.3. Flow solver

A flow solver from the R&D section of Electricite de
France named Code_Saturne was used as starting point
of the present development. The discretization in Code_-
Saturne is based on the collocated finite-volume approach.
It allows solving Navier-Stokes and scalar equations on
hybrid and non-conform unstructured grids. Velocity
and pressure coupling is ensured by a prediction/correc-
tion method with a SIMPLEC algorithm. The collocated
discretization requires a Rhie and Chow interpolation in
the correction step to avoid oscillatory solutions. A sec-
ond order centred scheme (in space and time) is used.
The flow solver has been extensively tested for LES of sin-
gle-phase flows (Archambeau et al., 2004; Laurence, 2006)
as well as its Lagrangian module for particle tracking
based on RANS/stochastic modelling (Minier et al.,
2004).
3. Results and discussions

3.1. Continuous phase

The continuous flow field in the circular bend is simu-
lated using LES as it is described in Section 2.1. Fig. 3
shows the pressure field and the time-averaged velocity in
the symmetry plane ðx ¼ 0Þ. Fig. 4a shows a LES instanta-
neous velocity field at a randomly chosen instant. Second-
ary streamlines are presented in Fig. 4b. For comparison,
instantaneous velocity field and secondary streamlines of
Breuer et al. (2006) work are presented in Fig. 5.

As the fluid flows through the straight pipe and redi-
rected into a bend the pressure which in the straight section
is uniform across the flow, must adjust in the bend to coun-
ter centrifugal forces. The pressure is greatest at the outer
wall farthest from the centre of curvature and least at the
inner wall nearest to the centre of curvature. At the bend
inlet the negative pressure gradient on the inner wall is
approximately twice the positive gradient on the outside
as it is depicted in Fig. 6. These initial gradients resulting
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from the change from straight to curved flow disappear
at approximately alpha ¼ 20� (see Fig. 1 for the definition
of angle of deflection alpha) so that in the mid section of
the bend between alpha ¼ 20� and alpha ¼ 80� a quasi
equilibrium condition is reached with approximately uni-
form pressure on the inner and outer walls. The cross-
stream pressure gradient established in the bend as it is
depicted in Fig. 3a has well known effects on the flow. At
the bend inlet, the boundary layer on the outer wall expe-
riences the effect of an adverse streamwise pressure gradi-
ent which may in a tight bend be sufficiently strong to
produce local separation, conversely at the inner wall the
boundary layer is accelerated. The reverse occurs at the
pipe exit where local pressure gradients of the opposite sign
appear as the flow adjusts to uniform pressure conditions
downstream.
Fig. 5. Breuer et al. (2006) predictions of the turbulent flow in the mid-
plane of the bend. (a) streamlines of the mean flow, (c) velocity magnitude
of the instantaneous flow.

Fig. 6. LES predictions of the pressure field near the wa
The impact of the curved geometry into the straight sec-
tion usually extends some distance upstream of the bend as
it is shown in Figs. 3b and 4a. Therefore the resulting flow at
the entrance of the bend already differs considerably from
of a fully developed pipe flow and should affect the second-
ary flow patterns within the bend as we shall discuss below.

The streamlines in the plane of symmetry as predicted
by LES calculations are presented in Fig. 4b. They provide
an indication of the secondary flow in the bend. The pres-
ent well-resolved LES results for the instantaneous velocity
field and streamlines compare fairly well with the predic-
tions of the fully-resolved LES of Breuer et al. (2006) as
portrayed in Fig. 5.

The flow in a bend is influenced by centrifugal force due
to the curvature. This centrifugal force is, in principle, bal-
anced by a pressure gradient in the plane of curvature.
However, near the wall where the velocity is small, this
pressure gradient can no longer be balanced and conse-
quently the fluid in the middle of the pipe moves outward
and impinges on the outer wall and then turns to move
inward along the wall to merge at the inner wall. This flow
impingement on the outer wall and separation at the inner
wall make flows in curved pipe whether laminar or turbu-
lent very complex. The result is a secondary flow superim-
posed on the main flow in the plane perpendicular to the
mean flow. The magnitude and the shape of this secondary
motion depend on the Dean number.

The direct effect of the secondary flow is to displace the
region of maximum velocity from the centre towards the
outer wall as it is shown in Fig. 7. For the bend entrance,
the mean axial velocity profile is significantly altered with
respect to the fully developed profile in the straight pipe
and the location of the maximum velocity is shifted toward
the inner bend (I) as it is depicted in Fig. 7a. This is
ll at the bend entrance. P 0 is the reference pressure.



Fig. 7. LES predictions of mean axial velocity in different sections of the bend. (a) Bend entrance, (b) 45� deflection, (c) 90� deflection. See Fig. 1 for the
definition of angle of deflection alpha.
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explained by the fact that no centrifugal forces due to the
redirection of the flow are present at the bend entrance,
but the radial pressure gradient of the curved section is
already perceptible which induces a secondary flow direc-
ted to the inner side over the entire cross-section.

The flow in 90� bends is almost always developing flows,
in which the velocity distributions do not attain forms that
are independent of the position along the pipe axis. Fig. 7b
and c show the cross-section mean axial velocity as it devel-
ops downstream the bend entrance at 45� and 90�
deflections.

At 45� deflection the outward movement of the location
of the maximum axial velocity is evident in LES results
with a perceptible thickening of the secondary boundary
layer and zone of flow recirculation around the innermost
of the bend. At the bend exit, the time-averaged axial veloc-
ity moves further toward the outer radius and the bound-
Fig. 8. LES predictions of the mean axial velocity
ary layer is uniformly thick on the inner bend while
becoming thinner on the outer radius. These trends are also
visible in Fig. 8 depicting the mean axial velocity profile
within the bend.

The secondary motion can be seen more clearly by
observing the mean streamlines in cross-sections as it is
depicted in Figs. 9 and 10 for the present LES and the work
of Breuer et al. (2006) respectively. At the bend entrance
and as mentioned earlier the centrifugal forces are very
weak to balance the pressure gradient which results in an
inward flow as it is shown in Fig. 9a. With increasing
deflection, the centrifugal forces increase and the time-aver-
aged flow fields show the well known counter-rotating
Dean vortices that circulate in the outward direction in
the central part of the pipe, which is the opposite direction
compared with the bend entry. This is depicted in Fig. 9 for
the 45� deflection. Moreover, an additional secondary flow
profile for different cross-sections of the bend.



Fig. 9. LES predictions of the streamlines of the secondary flow in different sections of the bend. (a) Bend entrance, (b) 45� deflection, (c) 90� deflection.
See Fig. 1 for the definition of angle of deflection alpha.

Fig. 10. Breuer et al. (2006) predictions of the streamlines of the
secondary flow in different sections of the bend. (a) 45� deflection, (b)
90� deflection. See Fig. 1 for the definition of angle of deflection alpha.
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structure consisting of a pair of small counter-rotating vor-
tices is predicted by the present LES and visible at the inner
radius in Fig. 9b. At higher deflection, the centre of these
secondary vortices moves from the inner radius to the outer
radius and get closer to the wall as it is shown in Fig. 9c for
the present LES calculations. Predictions of the secondary
motion for the present LES are compared with the results
of Breuer et al. (2006) depicted in Fig. 10. Globally, good
agreement is found except in the core region of the cross-
section at 90� deflection where a more pronounced distor-
tion of the secondary streamlines is noticed for the present
LES, and the pair of the small counter-rotating vortices
occurring at the inner radius is not visible in Fig. 9c. It is
conjectured that they were not visible in Fig. 9c because
of their small sizes but surely captured by the present
LES. Indeed, they do exist in that region preventing parti-
cles from depositing at the inner-most radius of the bend as
we shall discuss in the next section.

They are clearly some difference in the more minute
details of the predicted flow fields, but prolonging the discus-
sion is not useful in the absence of experimental data.
Indeed, most of the experimental works investigated turbu-
lent flows in curved bend of a very high Dean number, well
beyond the Dean number of the test case in hand (Boersma
and Nieuwstadt, 1996). For the few works where a compara-
ble Dean number bend flows are studied, the curvature ratio
turned out to be less than five. It is well known that in such
cases the conditions of similarity between flows in curved
bend depends on both Reynolds number and curvature ratio
and no longer on their combination, i.e., Dean number (Ber-
ger et al., 1983). Moreover, the work of Pui et al. (1983) does
not provide any results about the continuous phase.

To assess a-posteriori the quality of the present LES
results, the ratio of the sub-grid scale kinetic energy kSGS

to the total kinetic energy k is computed. Fig. 11 shows
an estimation of this ratio in the different directions. This
form of presentation gives an overall impression and was
chosen since the flow in curved bend does not own a direc-
tion of statistical homogeneity. The SGS kinetic energy is
estimated using Eqs. (13) and (14). In X direction and
thanks to the non-conforming embedded refinement near
the wall, the filtered out kinetic energy is kept under 5%
which means that the near-wall turbulence is well resolved.
This has a positive repercussion on the prediction of parti-
cle deposition that is significantly influenced by the near-
wall turbulence. Saying that, the amount of the kinetic
energy filtered out at the near wall region, though small
(around 5%), still corresponds to a range of small-scale tur-
bulent fluctuations that could influence the transport of
particles with very small Stokes numbers. Thus the use of
the stochastic model is justified for both the near-wall
region and the core region to well predict deposition and
dispersion of inertial particles. In Y and Z directions, a
ratio higher than 20% is noticed in the region
�3 < Y =R < �2 and 5:5 < Y =R < 6:5 which is the region
around 45� deflection. In this region, the grid should be
finer In order to keep the ratio around 20%.

Globally, the ratio of the SGS kinetic energy to the total
kinetic energy is well under 20% almost everywhere in the
domain and consequently the present LES is adequate
according to the index of LES quality developed by Celik
et al. (2003).
3.2. Dispersed phase

For the dispersed phase, the deposition efficiency is com-
puted for different particle Stokes numbers using the fol-
lowing equation:

gp ¼
Nbend

p

Nbend
p þ Nafter bend

p

; ð18Þ



Fig. 11. Ratio of the sub-grid scale kinetic energy kSGS to the total kinetic energy k in different directions.
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where Nbend
p is the number of particles that deposit in the

bend and N after bend
p is the number of particles that exit the

bend. The Stokes number of the liquid particles considered
ranges from 0.001 to 1.5 as it shown in Table 3. This range
of particle Stokes number covers a wide inertial particle
behaviour toward the SGS turbulence present in the flow.
For particles with small Stokes number ðSt < 0:2Þ, it is ex-
pected that the sub-grid scale turbulence should have a sig-
nificant impact on their transport and thus deposition. For
particle with intermediate Stokes number ð0:2 < St < 1Þ,
they should be more transported by the resolved turbulence
with a possibility of SGS turbulence to influence particles
with Stokes number at the lower end of this range. For
the third category that contains particles with Stokes num-
bers equal or larger than 1, they will not sense the turbu-
lence present in the flow and their inertial deposition will
be affected by the mean flow. For these particles, LES using
only the resolved field (no stochastic modelling) is therefore
expected to predict well their deposition efficiencies.

Fig. 12 depicts LES results of the deposition efficiency in
comparison with the measurements of Pui et al. (1983) and
the numerical results of Breuer et al. (2006). Also, a curve
fitted through the experimental data by Pui et al. (1983) is
added which describes the deposition efficiency as a func-
tion of the Stokes number:
gp ¼ 1� 10�0:963St: ð19Þ
It is worthy to mention that relation (19) is a fit for the
experimental observations of Pui et al. (1983) for particles
with Stokes number between 0.27 and 1.35. Therefore, the
curve is displayed in dashed line for St < 0:27.

The use of the filtered velocity field only to track the
inertial particles with Stokes numbers higher than 0.5
shows good agreement with the experimental results of
Pui et al. (1983) and the LES results of Breuer et al. (2006).

For particles with St < 0:5, the deposition is underesti-
mated and the differences between the LES predictions
using only the filtered velocity field and the results of both
Breuer et al. (2006) and the present LES using the stochas-
tic model become significant as the Stokes number becomes
smaller. Table 4 summarizes the differences in deposition
efficiencies gp predicted by the present LES with and with-
out the stochastic model SM. These differences are com-
puted as a ratio D1 or as a percentage D2:
D1 ¼ gpðwith SMÞ=gpðwithout SMÞ;
D2 ¼ ½gpðwith SMÞ � gpðwithout SMÞ�=gpðwith SMÞ%:

ð20Þ



Fig. 12. LES predictions of deposition efficiency versus particle Stokes number. St ¼ spU 0=R.

Table 4
Differences in deposition efficiencies predicted by LES with and without
the stochastic model SM. D1 and D2 are computed using Eq. (20)

St Breuer et al.
(2006)

Present LES
without SM

Present LES
with SM

D1 D2ð%Þ

0.001 0.18 0.14 0.2 1.43 30
0.05 4 3.5 4.4 1.26 21.5
0.1 12 10.16 12.6 1.24 19.4
0.2 35 27.95 33.5 1.20 16.57
0.27 45.5 38.92 43.55 1.12 10.63
0.29 48.3 42.59 45.99 1.08 7.39
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These differences in deposition efficiencies suggest that
for particles with Stokes number less than 0.5, the large-
scale turbulence fluctuations contained in the filtered LES
velocity field are not solely responsible of their dispersion
and deposition. For this class of particles, the discarded
SGS turbulence should be taken into account in order to
predict the correct level of turbulence these particles should
see and thus the correct deposition efficiency. For particles
with Stokes number higher than 0.5, the LES predictions of
the deposition efficiency should be similar whether the SGS
stochastic modelling is used or not because these particles
simply do not sense the SGS turbulent fluctuations.
Fig. 12 shows that this is the case and very good agreement
with the reference results is found.

An estimation of the time scale of the SGS fluctuations
that are washed out by the filtering operation in the present
LES shows that the SGS motion should have an important
role for the dispersion and deposition of part of the parti-
cles considered in theses simulations. Fig. 13 presents an
estimation of the SGS time scales in the computational
domain in different directions. The SGS time scale T �SGS is
non-dimensionalized by the integral time scale T ¼ R=U 0

on which the particle Stokes number in Fig. 12 is based.
This estimation is made according to Eq. (12). For the case
in hand the SGS time scale ranges between 0.12T and
0.25T and consequently particles with response times smal-
ler than 0.25T will sense a portion or the whole turbulence
linked to the SGS motion depending on their response
times. This agrees well with the results of Fig. 12. Indeed
a deviation between the deposition efficiency as predicted
by LES using the filtered field and the reference results
becomes noticeable for particles with a response time
equals to 0.29T and become more significant as the Stokes
number goes down as it is shown in Table 4.

The fluid velocity seen by the particles taking into
account SGS fluctuations is constructed as it is described
in Section 2.2.2. The present deposition efficiency predic-
tions obtained by using the stochastic model confirm the
results of the work of Breuer et al. (2006). There are some
differences between the deposition efficiencies predicted by
the present LES and those predicted by the work of Breuer
et al. (2006) (see Table 4) and this is due to the existence of
some discrepancies between the single-phase results of the
two simulations as it was discussed in Section 3.1. It is
worth mentioning that the evaluation of the different terms
of the stochastic model is based on the different resolved
variables of the single-phase flow (pressure and velocity
fields, SGS kinetic energy and its dissipation rate and the
SGS time scale). Therefore, the accuracy of the stochastic
model hinges on the accuracy of the single-phase results
beside its aptitude to physically represent the turbulence
fluctuations discarded by the filtering operation.

According to the predictions of the present LES and to
the work of Breuer et al. (2006), relation (19) does not hold
for the low Stokes numbers ðSt < 0:2Þ. Indeed, the numer-
ical results of the deposition efficiency versus Stokes num-
ber show an inflection point and approach zero for finite
Stokes number unlike the exponential relation (19) that
approaches zero only at St ¼ 0.



Fig. 13. Ratio of the sub-grid time scale T �SGS to the integral time scale in different directions. T ¼ R=U 0.
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The effect of Stokes number on particle deposition
behaviour is also investigated. Figs. 14 and 15 show the
LES predictions of deposition patterns on the outer and
inner bend respectively for nine different Stokes numbers.
The small particles with low inertia are able to follow clo-
sely the continuous flow and are subject to all the turbulent
fluctuations that are present in the flow with different time
scales. They mostly exit the bend without depositing as it is
shown on Fig. 14a, b and c. A small fraction of them
deposits on the side walls or on the inner bend owing to
the secondary motion as depicted in Fig. 15a, b and c.

Particles with intermediate Stokes number are more sub-
ject to inertia forces owing to their increased sizes. They
respond to less and less turbulent fluctuations because of
their growing Stokes numbers. Due to centrifugal forces,
particles that are in the core region of the bend are
entrained by the re-entrant jet and thus deposited on the
outer bend while particles that are trapped in the coun-
ter-rotating Dean vortices exit the bend without depositing.
For particles with Stokes number St ¼ 0:27, a deposition
on the outer bend is occurring only on the outermost radius
as it is shown in Fig. 14d. For particles with Stokes num-
bers St = 0.46 and St = 0.75, the outer bend is covered
completely with depositing particles as it is depicted in
Fig. 14e and f. Owing to their increased inertia the last
two classes of particles cease to follow the flow in the Dean
vortices and are driven toward the outer bend by the cen-
trifugal forces. For this range of Stokes number, part of
particles that exit the bend deposit on both sides of the
straight pipe as it is shown in Fig. 15d, e and f.

Particles with large Stokes numbers ðSt > 1Þ do not fol-
low the secondary flow in the bend. Thus, they almost all
deposit at the outer bend because of the centrifugal force
and only an insignificant number of these particles deposit
on the inner bend or exit the bend. This fact is depicted in
Fig. 15g, h and i.

It is noticeable in Fig. 15a to i that there is a long narrow
band around the innermost radius where no deposition takes
place. This fact is mentioned in Breuer et al. (2006) work but
not reported in the experimental study of Pui et al. (1983).
The reason for this phenomenon is the additional secondary
flow structure consisting of a pair of counter-rotating small
vortices at the inner bend radius that prevent particles from
depositing along a stripe at a region around the innermost
bend. As it was mentioned in Section 3.1, the fact that no
particles deposit on the innermost radius of the bend is a
proof of the existing of a pair of counter-rotating small vor-
tices in that region of the bend. However, at 90� deflection,
These structures do not appear in Fig. 9c because their sizes
are underestimated by the present LES.

To investigate the effect of particle injection position on
the deposition efficiency, the section of injection is divided



Fig. 14. LES predictions of particle deposition patterns on the outer bend at nine different Stokes numbers: (a) St = 0.001, (b) St = 0.05, (c) St = 0.1, (d)
St = 0.27, (e) St = 0.46, (f) St = 0.75, (g) St = 1.00, (h) St = 1.22, (i) St = 1.35.
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into 5 regions or bins ðNb ¼ 5Þ of equal surface area as it is
shown in Fig. 16. Particles are injected randomly at the
injection section and the number of deposited particles
originating from the same region and deposited is com-
puted and displayed in Fig. 17. For particle with Stokes
number St ¼ 0:001, no particle originating from zone 1
and 2 that represent the core region of the bend deposit
on the bend walls. Around 60% of particles that came into
contact with the bend walls are those that are injected near
the wall from zone 5. The contribution of this zone to the
number of depositing particles decreases with increasing
Stokes number while more and more particles injected



Fig. 15. LES predictions of particle deposition patterns on the inner bend at nine different Stokes numbers: (a) St = 0.001, (b) St = 0.05, (c) St = 0.1, (d)
St = 0.27, (e) St = 0.46, (f) St = 0.75, (g) St = 1.00, (h) St = 1.22, (i) St = 1.35.
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from zone 2 and 3 deposited. It is interesting to notice that
particles with Stokes number up to St ¼ 0:1 do not deposit
if they are all injected from zone 1.

This remark could have an important practical use con-
cerning the design of the Metered Dose Aerosol Inhalers
(MDI) that are used to deliver medication through the
mouth to the lungs for people with respiratory system dis-
eases. It is well known that the smaller are the aerosols gen-
erated by these MDIs, the lower is their deposition rate in the
mouth and throat and by consequence the less are the drug’s
side effects. At the same time the smaller are the aerosols the
more expensive is the device that generates them. The flow
parameters that are studied herein and the geometry in
which it takes place are similar to the flow in the mouth-
throat geometry and consequently the main findings of this
study can be used to design a cheap and efficient MDI.
Indeed the results show that if particles are injected on the
whole cross-section of the MDI’s section of injection,



Fig. 16. Definition of equal area interval on the section of injection. R the
radius of the section of injection. Nb is the number of bins. i is the zone
number.

Table 5
Computer requirements for the single- and two-phase LES calculations
using the present grid resolution and the one adopted by Breuer et al.
(2006)

Resolution
(million of
cells)

Np (million
of particles)

Normalized
CPU time

Single-phase LES 1.3 1
Two-phase LES without

stochastic modelling
1.3 0.25 1.174

Two-phase LES with
stochastic modelling

1.3 0.25 1.209

Single-phase LES 2.28 1.427
Two-phase LES without

stochastic modelling
2.28 0.25 1.623

One unit corresponds to 253 seconds of CPU time per time step on one
processor of an Optiplex GX260.
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particles with diameter as small as dp ¼ 0:62lm ðSt ¼ 0:001Þ
should be generated in order to have an insignificant deposi-
tion in the mouth-throat region. However, if the injection is
confined to the core region of the MDI’s section of injection
ðr <

ffiffiffiffiffiffiffi
0:2
p

RÞ, insignificant deposition occurs for particle
diameter as large as dp ¼ 6:8lmðSt ¼ 0:1Þ. It is important
to mention that although the 0:62lm particles are suggested
for usage in MDIs, they are not commonly used because they
can be easily exhaled (before deposition in the lungs) after
inhalation. Also, MDI aerosol deposition is also a function
of the inhalation flow rate or flow Reynolds number.

3.3. Computational requirements

The total computational times associated with the use of
the present grid resolution and a grid resolution similar to
the one of Breuer et al. (2006) are shown in Table 5. The
Fig. 17. Percentage of deposited particles per zone of injection. St is the
overhead associated with the stochastic model evaluation
is about 3% of the two-phase LES CPU time and approx-
imatively 17% of the discrete phase CPU time. When a grid
resolution similar to the one adopted by Breuer et al.
(2006) was considered, the single-phase LES CPU time
increased of almost 43% as compared to the CPU cost of
the present LES. Also the overhead associated with particle
tracking increased because the trajectory engine needs to
perform more tests while going through a denser grid
(� 10% increase). Thus the use of the grid resolution of
Breuer et al. (2006) to perform a two-phase LES (obviously
a stochastic model is not needed) resulted in an increase of
the CPU time of about 34%. This justifies the use of a coar-
ser grid coupled with a stochastic model for the present
two-phase LES.

4. Concluding remarks

A well-resolved LES was performed to study aerosol
deposition in a turbulent 90� bend flow with tubular
Stokes number. Different zones of injection are defined in Fig. 16.
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cross-section. Numerical predictions were compared to the
experimental observations of Pui et al. (1983) and the fully-
resolved LES of Breuer et al. (2006).

Due to the complexity of the turbulent flow in curved
pipe characterized by curved streamlines and zones of recir-
culation and the lack of comparison studies of the same
flow parameters, a good deal of care has been taken to
ensure that the simulation of the carrier phase is reasonably
accurate. Efforts was made to adapt the mesh to the
dynamical features of the flow and boundary conditions
were set such the inlet and outlet conditions would not
influence the turbulent flow in the bend. The numerical pre-
dictions of the secondary flow and streamlines in the sym-
metry plane and in cross-sections at different angle of
deflection showed a good qualitative agreement with the
fully-resolved LES of Breuer et al. (2006) though some dis-
crepancies were noticed in some regions of the bend. This is
mainly due to differences of grid resolution and distribu-
tion of cells, in particular in the cross-sections, between
the two simulations. A-posterioriestimation of the filtered-
out kinetic energy demonstrated that the present LES is
adequate according to the LES index of quality developed
by Celik et al. (2003) and Pope (2004).

For the dispersed phase, a stochastic model that
accounts for inertial particle transport by SGS motion
was used. It was anticipated that such modelling should
be crucial owing to the very small-Stokes-number particles
tracked. An estimation of the time scale of the SGS fluctu-
ations that are discarded by the filtering operation in LES
showed clearly those particles with Stokes number smaller
than 0.29 do sense the SGS turbulent fluctuations

Numerical results concerning the deposition efficiency of
inertial particles with Stokes number that ranges between
0.005 and 1.5 demonstrated the ability of the stochastic
modelling to reproduce with good accuracy the SGS effects
on small-Stokes-number particles. As it was expected the
use of the filtered velocity field only (no stochastic model-
ling ) to track particles with Stokes number smaller than
0.3 has proven inaccurate.
us;iðtÞ ¼ us;ið0Þexpð�Dt=T �SGSÞ þ ½�ui þ T �SGSPi�f1� expð�Dt=T �SG

up;iðtÞ ¼ up;ið0Þexpð�Dt=spÞ þ us;ið0Þ
1

1� sp=T �SGS

� �
fexpð�Dt=T

þ spgið1� expð�Dt=spÞÞ þ CiðtÞ;
xp;iðtÞ ¼ xp;ið0Þ þ up;ið0Þ:Dt:½1� expð�Dt=spÞ�

þ us;ið0Þ
1

1� sp=T �SGS

� �
� fT �SGS ½1� expð�Dt=T �SGSÞ� þ sp½1

þ ½�ui þ T �SGSPi�fDt þ spðexpð�Dt=spÞ � 1Þ

� 1

1� sp=T �SGS

� �
� fT �SGS ½1� expð�Dt=T �SGSÞ� þ sp½1� ex

þ spgiðDt � spðexpð�Dt=spÞÞÞ þ XiðtÞ:
The influence of the injection position of the small par-
ticles on their deposition efficiency was investigated. It was
shown that, if injected in the core region of the bend
ðr <

ffiffiffiffiffiffiffi
0:2
p

RÞ, particles with diameter as large as
6:8lmðSt ¼ 0:1Þ can exit the bend without depositing.

The present study shows that the deposition efficiency of
small inertial particles can be predicted with a good accu-
racy in the framework of LES using a coarse numerical
description. To remove uncertainties tied to the effect of
the SGS motion on inertial particle transport, SGS models
for particles should be taken into account. The Langevin-
type stochastic diffusion process used in this work has pro-
ven very adequate in this regard.

The use of a coarser numerical description coupled with
a stochastic modelling of the SGS motion provided sub-
stantial savings compared to a fully-resolved two-phase
LES, as the CPU time necessary for the evaluation of the
SDE system contributes to only a small fraction of the
CPU time of the discrete phase simulation.

The effect of SGS modelling becomes increasingly
important with higher Reynolds number non-equilibrium
turbulent flows where resolving all the relevant scales
becomes computationally prohibitive. In future the perfor-
mance of the present model needs to be further assessed for
such flows.
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Appendix. Analytical Solution of the SDE System

The analytical solutions of the SDE system (4.15) for
particle position xp, velocity up and seen fluid velocity us

are given below:
SÞg þ ciðtÞ;
�
SGSÞ � expð�Dt=spÞg

� expð�Dt=spÞ�g

pð�Dt=spÞ�g

http://rd.edf.com/code_saturne
http://rd.edf.com/code_saturne
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Where:

PðiÞ ¼ � 1

qf

o�p
oxi
þ 1

Re
o2�ui

oxjoxj
;

ciðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�0 < �r >

p
expð�Dt=T �SGSÞ

Z t

0

expð�t0=T �SGSÞdW i;

CiðtÞ ¼
1

sp
expð�Dt=spÞ

Z t

0

expð�t0=spÞciðt0Þdt0;

XiðtÞ ¼
Z t

0

Ciðt0Þdt0:
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